Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro.

نویسندگان

  • S Parkkila
  • H Rajaniemi
  • A K Parkkila
  • J Kivela
  • A Waheed
  • S Pastorekova
  • J Pastorek
  • W S Sly
چکیده

Acidification of the extracellular milieu of malignant tumors is reported to increase the invasive behavior of cancer cells. In normal tissues, production of acid is catalyzed by carbonic anhydrases (CAs), some of which are known to be overexpressed in certain cancers. To investigate the functional role of CA activity in such cancer cells, we analyzed the effect of acetazolamide, a potent CA inhibitor, on the invasive capacity of four renal carcinoma cell lines (Caki-1, Caki-2, ACHN, and A-498). We found that 10 microM acetazolamide inhibited the relative invasion rate of these cell lines between 18-74%. The Caki-2 and ACHN cell lines displayed the highest responsiveness, and their responses clearly depended on the acetazolamide concentration in the culture medium. Immunocytochemical and Western blotting results identified the presence of CA isoenzyme II in the cytoplasm of all four cell lines and CA XII on the plasma membrane in three of four cell lines. Because acetazolamide alone reduced invasiveness of these cancer cells in vitro, we conclude that the CAs overexpressed in these renal cancer cells contribute to invasiveness, at least in vitro, and suggest that CA inhibitors may also reduce invasiveness in other tumors that overexpress one or more CAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods

Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...

متن کامل

Synthesis and Evaluation of Antimicrobial Activity of Metal Complexes of 4-(2'-Hydroxy Phenyl Imino) Phenyl Sulphonamide

       Keeping in view the promising potential of carbonic anhydrase inhibitor based antimicrobials and enhancement of carbonic anhydrase inhibitory activity by metal complexes of sulfonamides, with an aim to develop better antimicrobial agents we have attempted investigation of antimicrobial activity of metal complexes of 4-(2'-hydroxy phenyl imino) phenyl sulphonamide. Sulfanilamide was taken...

متن کامل

Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion.

Carbonic anhydrase IX (CAIX) is a membrane-associated carbonic anhydrase (CA), strongly induced by hypoxia. CAIX is overexpressed in a variety of tumor types and associated with increased metastasis and poor prognosis. An inhibitor of CAs, acetazolamide has been reported to inhibit invasion. We used RNA interference (RNAi) to examine the function of CAIX in MDA468 and MDA231 breast carcinoma ce...

متن کامل

Evaluation of carbonic anhydrase IX as a therapeutic target for inhibition of breast cancer invasion and metastasis using a series of in vitro breast cancer models

Triple negative, resistant or metastatic disease are major factors in breast cancer mortality, warranting novel approaches. Carbonic anhydrase IX (CAIX) is implicated in survival, migration and invasion of breast cancer cells and inhibition provides an innovative therapeutic strategy. The efficacy of 5 novel ureido-substituted sulfamate CAIX inhibitors were assessed in increasingly complex brea...

متن کامل

Coordinated Regulation of Metabolic Transporters and Migration/Invasion by Carbonic Anhydrase IX

Hypoxia is a prominent feature of the tumor microenvironment (TME) and cancer cells must dynamically adapt their metabolism to survive in these conditions. A major consequence of metabolic rewiring by cancer cells in hypoxia is the accumulation of acidic metabolites, leading to the perturbation of intracellular pH (pHi) homeostasis and increased acidosis in the TME. To mitigate the potentially ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 5  شماره 

صفحات  -

تاریخ انتشار 2000